Archive for August, 2019

Sailing On!

Dear Horst,

It is great to see such important progress being made!

As the theory is simplified, it becomes more accessable and compelling and will gain ever greater acceptance!

Advances in the computer coding, gives an objective dimension to ECE theory, Myron’s assertation that doubters cannot argue with correct Cartan geometry as verified by computer, becomes ever more timely.

The aias ship sales on.

Well done Horst!

Up the revolution!

Best wishes

Kerry

On Thursday, 15 August 2019, Horst Eckardt <mail> wrote:

Also for the blog.

I finished the basic calculations of paper 439. When putting all parts of Cartan geometry together, we obtain a calculation scheme starting from a potential and ending in electric and magnetic fields of a given physical problem. That is within a framework of general relativity, therefore a novel approach. This is a great progress in ECE theory. Such a complete path had not been carried out before. One reason was that we had not compiled the Cartan formulas in this way so that (at least I myself) did not see that it is possible so straightforwardly. I had looked for this method for years 🙂
Another reason is that the Gamma connections can only be computed by computer algebra, and there is the ambiguity of how to choose the appearing constants. Setting them to zero gave an astonishing success in most cases I investigated.
(There remain some problems for complicated potentials. This has to be investigated further and is not addressed in the paper).

One result of the paper is that the B(3) field comes out for e-m waves in a quite natural way. It is lastly a consequence of the fact that the tetrad has to be a non-singular matrix in 4 dimensions. Myron would be delighted 🙂
There remains the problem that the Lambda spin connection is not antisymmetric. Either there is still an error in the calculations, or it has to do with the charge density. For e-m waves, which correspond to the e-m free field, all connections are antisymmetric. I will have to discuss this point with Doug Lindstrom later on.

I separated the Maxima code in a way that a library for all operations of Cartan geometry needed has been built. This should also be usable for the text book. In addition, this seems to be the begin of a generally usable code which Sean MacLachlan requested a long time ago.

I think we make progress in theory now. I appended the draft version of paper 439. The conclusion is still missing. I will give a perspective for the next papers where the new code path through Cartan geometry could be modified for solving new questions. For example,
1) when the e-m fields are given, what are the connections, and what is the potential (or tetrad)?
2) how can a resonant spin connection be obtained from a given e-m field?

Please give your comments to the paper.
I will be on a holiday trip until Monday.

Horst

Draft of Paper 439

Also for the blog.

I finished the basic calculations of paper 439. When putting all parts of Cartan geometry together, we obtain a calculation scheme starting from a potential and ending in electric and magnetic fields of a given physical problem. That is within a framework of general relativity, therefore a novel approach. This is a great progress in ECE theory. Such a complete path had not been carried out before. One reason was that we had not compiled the Cartan formulas in this way so that (at least I myself) did not see that it is possible so straightforwardly. I had looked for this method for years 🙂
Another reason is that the Gamma connections can only be computed by computer algebra, and there is the ambiguity of how to choose the appearing constants. Setting them to zero gave an astonishing success in most cases I investigated.
(There remain some problems for complicated potentials. This has to be investigated further and is not addressed in the paper).

One result of the paper is that the B(3) field comes out for e-m waves in a quite natural way. It is lastly a consequence of the fact that the tetrad has to be a non-singular matrix in 4 dimensions. Myron would be delighted 🙂
There remains the problem that the Lambda spin connection is not antisymmetric. Either there is still an error in the calculations, or it has to do with the charge density. For e-m waves, which correspond to the e-m free field, all connections are antisymmetric. I will have to discuss this point with Doug Lindstrom later on.

I separated the Maxima code in a way that a library for all operations of Cartan geometry needed has been built. This should also be usable for the text book. In addition, this seems to be the begin of a generally usable code which Sean MacLachlan requested a long time ago.

I think we make progress in theory now. I appended the draft version of paper 439. The conclusion is still missing. I will give a perspective for the next papers where the new code path through Cartan geometry could be modified for solving new questions. For example,
1) when the e-m fields are given, what are the connections, and what is the potential (or tetrad)? 2) how can a resonant spin connection be obtained from a given e-m field?

Please give your comments to the paper.
I will be on a holiday trip until Monday.

Horst
paper439.pdf