399(2): Ratio of Vacuum electric field to vacuum potential

This is indeed a remarkable result by Horst, producing infinities in the spin connection starting again with the well known ideas of the Lamb shift theory. If there infinities in the spin connection the electric field strength also becomes infinite.

Date: Fri, Jan 26, 2018 at 2:29 PM
Subject: Re: 399(2): Ratio of Vacuum electric field to vacuum potential
To: Myron Evans <myronevans123>

This method of determining omega gives interesting results. I used an oscillating charge density rho(x) in one dimension:

rho(x) = rho_0 * cos(k*x).

Then the equations are simple enough to be solved analytically (see protocol). If all integration constants are set to zero, the result is

omega_x = k * tan(k*x),

see %o11 in the protocol. That means we have infinities in the spin connection, quite remarkable.
This result was obtained by computing E/phi. If the second method del^2 E / del^2 phi is used, the same result comes out, this time without integration constants that vanish due to two-fold differentiation (see %o13).

Horst

Am 24.01.2018 um 13:11 schrieb Myron Evans:

This note gives the useful new equations (20) to (22) so the spin connections can be found without having to know < delta r dot delta r >. The Poisson equation (24) can be used to find the potential in the absence of the vacuum for a given material charge density. This uses the highly developed methods of solution of the Poisson equation. %This method can be used in any area of physics, because the Poisson equation occurs throughout physics. It would be very interesting to graph the three spin connection components of Eqs. (20) to(22) for typical solutions of the Poisson equation. This calculation is given at second order, but can be extended to higher orders.

399(2).pdf

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: