374(7): The Lagrangian of Fluid Dynamics

This is given by Eq. (4), the Euler Lagrange equation is given by Eq. (5). Its ECE2 covariant (relativistic) version is given by Eq. (10). This appears to be the first time that a lagrangian has been clearly defined for fluid dynamics. This theory achieves a completely self consistent description of orbital precession, forging together precession due to ECE2 covariance and precession due to ECE2 fluid gravitation. The non central nature of the general gravitational potential leds to many interesting types of orbit. After an extensive literature search I found that some very abstract and obscure attempts have been made in mathematical physics to find the lagrangian for fluid dynamics. The result (4) seems to have been missed by the mathematical physicists.

a374thpapernotes7.pdf

Advertisements
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: