370(6): General Transformation from Spherical Polar to Eulerian Angles

This is given by Eq. (4) in general, and in the special case (5), by Eq. (6). It is difficult to find this transformation in the literature, but it is very useful. The lagrangian of rotational dynamics in terms of the Euler angles can always be transformed to a simpler lagrangian expressed in terms of spherical polar coordinates. For a spherical top of moment of inertia I = I1 = I2 = I3, the rotational kinetic energy is Eq. (4) multiplied on both sides by I. It is seen that the number of lagrange variables is reduced from three to two, and the Euler Lagrange equations of motion are greatly simplified. Then, gravitational terms can be added as in Horst’s dumbbell representation of the earth in orbit around the sun.


  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: